
1 
 

A WAM Prolog for Teaching 

Andrew Davison 

Dept. of Computer Eng., Prince of Songkla Univ. 

Hat Yai, Songkhla 90110, Thailand 

Email: ad@fivedots.coe.psu.ac.th 

July 2020 

 

1. Introduction 

BuProlog consists of two JAR files – BuProlog.jar holding a Prolog [6] compiler that 

generates WAM-like [7] code, and BuWAM.jar, a virtual machine for executing queries 

against that code. 

The system was developed for two reasons. The primary one was to create a smallish 

compiler and virtual machine suitable for projects in this author's course on compiler design. 

The second purpose was to make a simple-to-use programming tool for an introductory lab 

on Prolog. One result of these goals is that the system can print out extensive diagnostic data 

and, more unusually, generate parse trees and execution graphs showing how queries are 

evaluated. 

This work is a fork of the Java-based Prolog compiler/runtime system written by Stefan 

Buettcher, available at http://stefan.buettcher.org/cs/wam/. However, the compiler was 

largely rewritten to employ conventional recursive descent parsing and code generation 

techniques, and the diagnostics and graphing functionality are also new. Buettcher's virtual 

machine was refactored and simplified in several ways, while retaining enough features to 

run programs typical of an introductory Prolog lab. 

The main purpose of this report it to give a fairly detailed overview of the internals of the 

compiler and virtual machine, along with an introduction to the WAM instruction set and its 

implementation [2]. This guide is not intended to be an introduction to Prolog or compiler 

design. There are many good books about Prolog[4; 3; 6] and websites such as "Learn Prolog 

Now" (http://learnprolognow.org), "The Power of Prolog" (https://www.metalevel.at/prolog), 

and "Adventures in Prolog" (http://www.amzi.com/AdventureInProlog/). 

 

1.1. Using the System 

BuProlog comes with many small examples (see Appendix A for a list). A file is compiled 

like so: 

> java –jar BuProlog.jar parents.pro 

This generates a parents.wam text file of WAM instructions, which can be loaded by the 

run-time system: 

> java –jar BuWam.jar –p parents.wam 



2 
 

BuWAM then enters a REPL, where the user can pose queries against the loaded code. For 

example: 

?- parentOf(herbert,X). 

?- length([a,b,c],L). 

?- append(X,Y,[1,2,3]). 

The "-p" flag included with the BuWAM.jar call causes the evaluation of each query to also 

be rendered as a graph, which is saved as a PNG image. 

For example, consider when the ?-parentOf(herbert,X) query is applied to the facts: 

 

parentOf(kim,holly).     % kim is the parent of holly 

parentOf(margaret,kim). 

parentOf(margaret,kent). 

parentOf(esther,margaret). 

parentOf(herbert,margaret). 

parentOf(herbert,jean). 

 

The first answer is X=margaret and after the user requests another answer, X=jean. When the 

"-p" flag is set, the execution will generate the graph shown in Figure 1.  

Figure 1. The execution of ?-parentOf(herbert,X). 

 

An execution graph consists of alternating levels of "call" and "try" nodes. A "call" represents 

a goal that will be matched against facts and rules in its child "try" nodes. Each "try" is 

labeled with the predicate name and "_<number>" which denotes which of the predicate's 

facts or rules is being tested. All of the "call" and "try" nodes are uniquely numbered to help 

the user follow Prolog's backtracking execution order.  

Nodes colored green denote that a query has succeeded and will return an answer. For 

instance, in Figure 1, the binding of X to margaret occurs in the fifth parentOf/2 fact. When 

the user requests another answer, execution backtracks to node (6), resumes and a second 

answer is generated. 



3 
 

Figure 2 shows the execution of ?-append(X,Y,[1,2,3]), which produced four results 

through backtracking. append/3 is defined in the standard way: 

 

append([],L,L). 

append([H|T],L2,[H|L3]) :- append(T,L2,L3).  

 

Figure 2. The execution of ?- append(X,Y,[1,2,3]). 

 

The four results are obtained when the query succeeds in nodes (2), (5), (8), and (11). When 

the user asks for a fifth answer, all the possibilities are exhausted by node (12), and "No" is 

printed. A query failure is denoted by coloring the node red. 

The execution graph also includes bindings (in blue boxes), which show how a result is 

constructed. For example, the third result, X = [1,2] and Y =[3], is due to the success of node 



4 
 

(8), but the binding is constructed in stages, represented by the three boxes hanging off nodes 

(8), (6), and (3).  

When the user requests an alternative answer, the system resumes its execution immediately 

after the node that supplied the previous answer. For example, the third answer to the 

append/3 query begins at node (9). This tries the second append/3 clause against the append/3 

call in node (7). 

These graphs are a useful tool for students new to Prolog, but also suffer from some 

drawbacks. The main one is that they quickly become very large, and consequentially quite 

confusing.  For example, students are advised to run the example N-queens and Towers of 

Hanoi programs with small input sizes (e.g. a 4x4 board, and three disks respectively) to get 

an idea of how they work before moving onto larger input (e.g. a 8x8 board and six disks). 

Also, very large graphs may be too large for the graph renderer, which will report a "graph is 

too large" error or even crash. A third concern is that BuProlog has no control over how the 

generated graphs are laid out, and so there's no way to correct the occasionally confusing 

positioning of arrows (e.g. as seen below nodes (4) and (7) in Figure 2). 

This graphing is carried out by the excellent GraphViz tool (https://graphviz.org/) which is 

installed separately from BuProlog.  

 

1.2. Differences from Prolog 

BuProlog only supports a small set of built-in predicates, which are listed in the source code 

of the Builtin enum (see Builtin.java) and in Appendix B.  

The most serious language restriction is that atoms and variable names can only use letters 

and digits, although a variable may start with "_". This is spelled out by the regular 

expressions for those token types in Lexer.jflex: 

Atom     = [a-z]([:letter:] | [:digit:])* 

Variable = [A-Z_]([:letter:] | [:digit:])* 

Also only integers are supported: 

Integer  = [-+]?[:digit:]+ 

In addition, every functor must be defined as an atom followed by a bracketed list of 

arguments. The relevant BNF grammar rule is: 

functor ::= Atom [ '(' args ')' ] 

In particular this means that tests such as X < 2, must be coded as le(X,2), and common 

Prolog built-ins '=", "\=" and "=.." are referred to by the names unify, nununify, and univ. 

The is/2 predicate is also written in prefix form, and its expression as a term. For instance, a 

programmer must write is(X1, add(X,1)) rather than X1 is X+1. 

 

  



5 
 

2. The BuProlog Compiler 

The compiler utilizes a standard design  [1] , as illustrated by Figure 3. 

Figure 3. Stages of a Compiler. 

 

Figure 3 is the basis of an augmented UML class diagram shown in Figure 4. The "Semantic 

Analysis" stage is missing since its functionality mostly consists of extra processing inside 

the code generator.   

Figure 4. Class Diagram for the BuProlog Compiler. 

 

2.1. Lexical Analysis 

The lexical analysis phase is defined by regular expressions expressed in a Java version of lex 

called JFlex (https://www.jflex.de/).  

The two most confusing aspects of writing a lexer are probably formulating its regexs and it's 

interface to the rest of the parser. For the first problem, a regular expression testing site, such 



6 
 

as https://regex101.com, is a great help. For instance, one of the hardest regexs in BuProlog 

matches a quoted string: 

Str   = [\'\"][^\'\"]*[\'\"]    

The expression's strengths and weaknesses can be seen by testing it at regex101, as shown in 

Figure 5. 

Figure 5. Testing a Regular Expression. 

 

Figure 5 shows that this regex cannot deal with nested strings. 

The compiler also includes a simple test-rig (in LexerTest.java) for invoking the Lexer class 

separately from the compiler: 

 
public class LexerTest 

{ 

  public static void main(String[] args) 

  { 

    if (args.length != 1) { 

      System.out.println("Usage: java LexerTest <fnm>"); 

      return; 

    } 

    Token tok; 

    try { 

      Lexer lexer = new Lexer(new FileReader(args[0]), true); 

                            // printing is on 

      tok = lexer.nextToken(); 

      while (tok.symbol() != Toks.EOF) { 

        // System.out.print(tok + " "); 

        // no need to print if Lexer() called with true arg 

        tok = lexer.nextToken(); 

      } 

      System.out.println(); 

    } 

    catch (Exception e)  

    { System.out.println(e.getMessage()); } 

  } 

 



7 
 

}  // end of LexerTest class 

 

 

2.2. Syntax Analysis 

BuProlog's recursive descent parser is a direct translation of the following EBNF grammar 

for the language: 

 

program ::=  query | clauses 

 

query ::= '?-' body '.' 

   

clauses ::= clause clause* 

clause ::= functor [  ':-' body  ] '.' 

 

functor ::= Atom [ '(' args ')' ] 

 

body ::= goal [ ',' body ] 

goal ::= functor  |  '!' 

 

structure ::= Atom [ '(' args ')' ] 

   // same as functor but useful separation for code generation 

 

args  ::=   term  ( ',' args )                         

term  ::=   structure | Variable | Integer | list | Str 

 

list  ::=   '[' [  args  [ '|' list_tail ] ]  ']'      

list_tail  ::=    Variable | list                      

 

 

// managed by the lexer: 

Atom     = [a-z]([:letter:] | [:digit:])* 

Variable = [A-Z_]([:letter:] | [:digit:])* 

Integer  = [:digit:]+ 

Str      = [\'\"][^\'\"]*[\'\"] 

 

Each rule is encoded by a similarly named method which combines two tasks – the parsing of 

that part of the grammar, and the construction of its part of a parse tree. 

For example, the top-level rule, program, becomes: 

 

public ParseNode program() throws IOException 

// EBNF: program ::=  clauses 

{  

  int numSps = 1; 

  if (debugOn) 

    iewriteln(numSps,"program"); 

 

  ParseNode tree = new ParseNode(); 

 



8 
 

  clauses(tree, numSps+1); 

  if (tok.symbol() == Toks.EOF)  { 

    writeln("\n\nFinished parsing.");  

    updateNames(tree); 

  } 

  else { 

    writeln("Parsing failed"); 

    tree = null; 

  } 

  br.close(); 

  return tree; 

}  // end of program() 

 

The call to updateNames() after all the tokens have been processed ensures that the predicate 

names of each clause are modified to include information about their arity, the clause index, 

and the total number of clauses. For example: the first clause of append will be renamed to 

append/3_1/2, and the second (and final clause) becomes append/3_2/2. 

The method for parsing a Prolog list is: 

 

private void list(ParseNode tree, int numSps) throws IOException 

/* EBNF: list  ::=   '[' [  args  [ '|' list_tail ] ]  ']' 

*/ 

{ if (debugOn) 

    iewriteln(numSps, "list"); 

 

  tree.type = ParseType.LIST; 

  tree.head = new ParseNode(); 

  tree.tail = new ParseNode(); 

 

  match(tok, Toks.LSQUARE); 

  if (tok.symbol() != Toks.RSQUARE) { 

    arguments(tree.head, true, numSps+1);   //  list arguments 

    if (tok.symbol() == Toks.BAR) { 

      match(tok, Toks.BAR); 

      listTail(tree.tail, numSps+1); 

    } 

    else  

      tree.tail = null; 

    match(tok, Toks.RSQUARE); 

  } 

  else {   // an empty list 

    match(tok, Toks.RSQUARE); 

    tree.value = "[]"; 

    tree.head = null; 

    tree.tail = null; 

  } 

}  // end of list() 

 



9 
 

At the heart of list(), and other parsing methods, are repeated calls to match() which tests the 

current lexer token and reads in the next one.  

The compiler can be invoked with a "-d" option (short for 'diagnostics' or 'debugging') which 

makes its appearance in the previous methods as code prefaced by a test of debugOn. The 

diagnostic code in the parser constructs a rudimentary indented list of method calls which 

parallel the descent over the grammar. For example, the parsing of the first clause of 

append/2 will be reported as: 

 

append  % program 

   %  clauses 

   %   clause 

   %    functor 

   %     atom 

([   %     arguments 

   %      term 

   %       list 

],L   %      arguments 

   %       term 

   %        var 

,L   %       arguments 

   %        term 

   %         var 

). 

 

One drawback of this approach is the sheer volume of information that pours forth from the 

compiler. For that reason, all the diagnostics output is sent to the stderr, which can be 

redirected: 

>  java -jar BuProlog.jar -d append.pro 2> debug.txt 

All the normal output from the compiler goes to stdout, and so appears on the command line. 

 

2.3. The Parse Tree 

The other task of methods such as list() is to build a parse tree, by linking ParseNode objects 

together. ParseNode defines a node that can construct a binary tree: 

 

// inside ParseNode.java 

public ParseType type; 

public String value; 

public ParseNode head, tail;    // links to the subtrees 

 

The generated tree can be quite hard to visualize, the "-p" option of BuProlog.jar causes it to 

generate a graphical representation: 

>  java -jar BuProlog.jar -p append.pro 

 



10 
 

The parse tree drawn for append/3 is shown in Figure 6. 

Figure 6. The Parse Tree for append/3. 

 

The text in the top half of each node is a ParseType value, and the bottom half holds either a 

string (e.g. "append/3_1/2"), or one or two pointers going to subtrees. 

As with the execution graphs generated by BuWAM.jar, this approach doesn't scale up to 

programs much larger than append/3, but it's still useful for getting to grips with how parse 

trees represent Prolog code. 

 



11 
 

2.4. The Structure of a WAM Program 

Before I can give an overview of the compiler's code generation, it's necessary to first explain 

how typical WAM programs are structured. This section will focus primarily on the syntax of 

the WAM instruction set, while details about how WAM code is executed being deferred 

until when the BuWAM is discussed. 

After the WAM was proposed by David Warren [7], it soon became the de facto way that 

Prolog compilers are implemented, albeit with variations in the instruction set. A great 

introduction to it is the textbook by Hassan Aït-Kaci [2], available online at 

https://github.com/a-yiorgos/wambook. That site also includes a briefer set of slides which he 

prepared at around the time the book was published.  

Stefan Buettcher's WAM implementation differs in several ways from the WAM described 

by Warren and Aït-Kaci, which I'll discuss as the presentation progresses. 

  



12 
 

The template in Figure 7, based on one by Van Roy [5], shows how a collection of clauses for 

a p/3 predicate is represented in WAM code. 

Figure 7. Compiling the p/3 Predicate to WAM Code. 

 

A multi-way switch is defined using a try_me_else instruction for the first clause, a 

trust_me for the last clause, and multiple retry_me_else instructions for the clauses in 

between. Each instruction is labeled with "p_3" standing for the predicate's name and arity, 

and "_number" for the clause index (aside from in the first branch).  

The code for each branch has a general structure, based around a call to allocate at the start, 

and deallocate and proceed at the end. allocate creates an environment for the variables 

local to the clause (the Prolog equivalent of an activation frame) and deallocate 'finishes' 

using that environment at the clause's end.  

The code within a clause can be understood in terms of getting, putting and unifying two 

types of variables, called permanents and arguments. Permanent variables are local variables  

created within a clause while it's being executed (they're denoted by a 'Y' and a number). 

Argument variables are used in two ways within a typical clause: they hold data coming from 

the calling goal, which is copied into permanents, and secondly they're utilized to store data 



13 
 

that's about to be passed to goals called from within the clause. Arguments are denoted by an 

'A' and a number. 

The easiest way of understanding how the get, put, and unify instructions work together is by 

comparing a few WAM programs with their Prolog originals. 

For example, the Prolog code for append/3: 

 

append([],L,L). 

append([H|T],L2,[H|L3]) :- append(T,L2,L3).  

 

becomes: 

 

    append_3::: try_me_else append_3_2  % first clause 

                allocate 

 

                get_variable Y0 A0   % 1 

                put_constant [] Y1   % 2 

                unify_variable Y0 Y1  % 3 

 

                get_variable Y2 A1   % 4 

 

                get_value Y2 A2   % 5 

 

                deallocate 

                proceed 

 

  append_3_2::: trust_me    % second clause 

                allocate 

 

                get_variable Y0 A0   % 1 

                unify_list Y3 Y2 Y1   % 2 

                unify_variable Y0 Y3  % 3 

 

                get_variable Y4 A1   % 4 

 

                get_variable Y5 A2   % 5 

                unify_list Y7 Y2 Y6   % 6 

                unify_variable Y5 Y7  % 7 

 

                put_value Y1 A0   % 8 

                put_value Y4 A1   % 9 

                put_value Y6 A2   % 10 

                call append_3 

 

                deallocate 

                proceed 

 

Extra blank lines have been added, along with numbered comments (after the "%"s). 



14 
 

Consider the query ?-append(A0,A1,A2). It will start by matching with the first branch of 

the WAM code. The resulting sequence of get, put and unify calls are numbered in Figure 8, 

and correspond to the commented lines in the code above. 

Figure 8. Matching a query to the first append/3 clause. 

 

The numbered instructions 1, 2, and 3 deal with matching the first input  argument (A0) with 

the first permanent variable (Y0) in the clause. The fourth instruction deals with assigning A1 

to Y2, and the final argument (A3) is handled by unification with Y2 (there's no need for a 

Y3). 

If this matching fails, then the try_me_else instruction will cause execution to jump to the 

second branch beginning with the label append_3_2 (i.e. the second clause). The next round 

of get, put and unify calls are numbered in Figure 9 and in the code above. 

Figure 9. Matching a query to the second append/3 clause. 

 

A similar mix of get, put, and unify instructions is used to match the query's input arguments 

to permanent variables. However, the clause's call to append/3 means that there's a second 

phase carried out by the instructions numbered 8-10. They reuse the argument variables A0, 

A1 , and A2 to store data that needs to be passed to the append_3 call after instruction 10. 

This second branch utilizes a variation of the unify instruction: unify_list which takes 

three arguments, and specifically supports list unification: 



15 
 

unify_list List Head Tail  ≡  List = [ Head | Tail ] 

There's also a unify_struct, which is employed in the WAM code for the following 

address/3 fact: 

address(john, street(19, brooke), liverpool). 

It becomes: 

 

   address_3::: try_me_else address_3_2 

                allocate 

 

                get_constant john A0  % 1 

 

                get_variable Y0 A1   % 2 

                put_constant street Y1  % 3 

                put_constant 19 Y2   % 4 

                put_constant brooke Y3  % 5 

                put_constant [] Y4   % 6 

                unify_list Y5 Y3 Y4   % 7 

                unify_list Y6 Y2 Y5   % 8 

                unify_struc Y7 Y1 Y6  % 9 

                unify_variable Y0 Y7  % 10 

 

                get_constant liverpool A2  % 11 

 

                deallocate 

                proceed 

 

  



16 
 

When the query ?-address(A0,A1,A2) is matched, the sequence of get, put and unify calls 

are numbered as in Figure 10, and also in the code above. 

 

Figure 9. Matching a Query to the address Clause. 

 

Most of the instructions are involved with matching the second argument (A1) of the query 

with the structure that occupies the second position in the head of the clause (i.e. 

street(19,brooke)). The match is built up from the constituent parts of a structure, and 

then calls unify_struc to deal with term-based unification: 

unify_struc Structure Functor Args_list   ≡ Structure = Functor( Args_list) 

Since a structure can have any number of arguments (including none), the BuWAM stores 

those arguments in a list. The street term has two arguments which requires the list to be 

built up in three stages – first an empty list is stored in Y4, and then two elements are added 

to its front (Y3 and Y2) by list unification.  

 

2.5.  A Summary of the BuWAM Instructions 

The preceding section's examples used 14 of the 18 instructions in Stefan Buettcher's WAM. 

They can be grouped into six categories, as in Table 1. 

 

1. Get Used when a goal is matched against the head of a clause to 

load arguments from that goal (its 'A' variables) into the clause 

variables (Y's). 

2. Put Utilized before calling a goal in the body of a clause to load 



17 
 

clause variables (Y's) into the goal's arguments (A's). 

3. Unification Employed with get and put instructions to help link variables. 

The list and structure versions pull apart and construct those 

data structures. 

4. Calling Used to execute a goal, to return, and to set up the environment 

for a clause that matches the goal. 

5. Branching. Switch between clauses that might match a goal, and to create 

choice point information. 

6. Cuts Handles Prolog cuts. 

Table 1. Types of WAM Instruction. 

 

A complete list of all the instructions, with a short description of each one, appears in Table 

2. (A "// NEW" comment indicates that this instruction isn't in the original WAM.) 

 

1. Get Instructions 

get_variable Y A Y ← A 

Only used for the first occurrence of Y inside 

the clause’s head. 

get_value V A Does Y = A? 

Used for subsequent occurrences of Y inside 

the clause’s head. 

get_constant c A Does A == c? 

2. Put Instructions 

put_value Y A A ← Y 

put_constant c A 

put_constant c Y 

A ← c 

Y ← c 

create_variable Y name Create a new variable with a printable name. 

Only used for 'Q' variables which appear in a 

user query.      // NEW 

3. Unification 

unify_variable v1 v2  v1 = v2 

unify_list  v1 v2 v3   v1 = [ v2 | v3]   // NEW 

unify_struc  v1 v2 v3 v1 = v2(v3)       // NEW 

v3 is a list of the functor's arguments. 

4. Calling 

call label_arity Execute the predicate with the specified label 

and arity by jumping to its first clause. 

proceed Return from a clause. 

allocate Create an environment for this clause. 

deallocate Restore the previous environment, but don't 

delete the current one. 

halt The query's evaluation is terminated.  // 



18 
 

NEW 

5. Branching 

(re)try_me_else label Create a choice point which jumps to the 

clause starting at label if the code of the 

current clause following this instruction fails. 

trust_me  If the code of the clause following this 

instruction fails, then the execution of the 

goal will fail. 

6. Cuts 

get_level Y Y is assigned this clause's choice point. 

cut Y Discard all the choice points from the current 

one back to the one stored in Y. 

Table 2. Stefan Buettcher's WAM Instruction Set. 

 

The four instructions that haven't appeared yet are create_variable, halt, cut_level, and 

cut. The first two are used in the WAM code generated for user queries, and (as you might 

expect) the cut instructions come into play when Prolog uses "!". 

 

2.6. Other WAMs 

For readers familiar with the WAM, Buettcher's version differs in several ways from the one 

described by Warren [7], Aït-Kaci [2], and Van Roy [5]. 

The standard WAM utilizes two types of variable inside a clause called permanents and 

temporaries. This distinction allows registers to be reused more efficiently.  

The original WAM doesn't offer unify_list and unify_struc instructions. Instead, the 

functionality is supported by set instructions and get_list and get_structure operations 

that work with a version of unify_variable that only takes a single argument. For example: 

 

% in a standard WAM 

get_structure p/3 V0 %  X0 = p 

unify_variable V1  %    (V1, 

unify_variable V2  %     V2, 

unify_variable V3  %     V3 ) 

 

Buettcher's WAM uses explicit arguments in its unification instructions, which is arguably 

easier to understand, although it means that lists and structures generally require more lines 

of code to be constructed or pulled apart. 

All of the WAM instructions related to optimizations, such as clause indexing, and last call 

optimization are missing from Buettcher's WAM; BuProlog is primarily intended as a 

teaching tool.  

 

3. Code Generation in the Compiler 



19 
 

A look back at the class diagram for BuProlog in Figure 4 shows that code generation utilizes 

three classes: WAMProgram, WAMClause, WAMStatement, and two enumerations: 

OpWAM, and Builtin. The main() function of BuProlog.java calls WAMProgram to build a 

list of WAMClause objects, one for each clause in the program. In turn, each WAMClause 

object holds a list of WAMStatement objects, representing the sequence of instructions that 

make up the clause.  

Another way of understanding the code generation process is that the compiler's parse tree 

(e.g. the tree for append/3 in Figure 6) is converted into lines of WAM code (e.g. 

append.wam listed on p.13). To help a compiler design student understand this 

transformation, BuProlog can be called with the "-d" and "-p" options: 

> java –jar BuProlog.jar –dp append.pro 2> debug.txt 

The code generation section of the diagnostic output is shown below: 

 

Generating WAM Code: 

 

 % clause 

 %   predGen: append/3_1/2 

 |   [ append_3::: try_me_else append_3_2 ] 

 %     predArgGen: list:[] 

 |     [ get_variable Y0 A0 ] 

 %       listGen 

 |       [ put_constant [] Y1 ] 

 |     [ unify_variable Y0 Y1 ] 

 %     predArgGen: var:L 

 |     [ get_variable Y2 A1 ] 

 %     predArgGen: var:L 

 |     [ get_value Y2 A2 ] 

 | [ allocate ] (1) 

 | [ deallocate ] 

 | [ proceed ] 

 

 % clause 

 %   predGen: append/3_2/2 

 |   [ append_3_2::: trust_me ] 

 %     predArgGen: list: 

 |     [ get_variable Y0 A0 ] 

 %       listGen 

 %         callArgGen: var:T 

 %         listArgsGen 

 %           callArgGen: var:H 

 |         [ unify_list Y3 Y2 Y1 ] 

 |     [ unify_variable Y0 Y3 ] 

 %     predArgGen: var:L2 

 |     [ get_variable Y4 A1 ] 

 %     predArgGen: list: 

 |     [ get_variable Y5 A2 ] 

 %       listGen 

 %         callArgGen: var:L3 

 %         listArgsGen 



20 
 

 %           callArgGen: var:H 

 |         [ unify_list Y7 Y2 Y6 ] 

 |     [ unify_variable Y5 Y7 ] 

 %   bodyGen 

 %     callGen: append/3 

 %       callArgGen: var:T 

 |       [ put_value Y1 A0 ] 

 %       callArgGen: var:L2 

 |       [ put_value Y4 A1 ] 

 %       callArgGen: var:L3 

 |       [ put_value Y6 A2 ] 

 |     [ call append_3 ] 

 | [ allocate ] (1) 

 | [ deallocate ] 

 | [ proceed ] 

 

The output is ab interleaving of two kinds of  data. Each line either begins with a "%" which 

denotes that a code generation function was called, while "|" lines lists the generated WAM 

code. The lines are also indented to reflect the nesting of the function calls inside 

WAMClause. 

 

3.1. Code Generation inside WAMClause 

The WAMClause methods will be explained by focusing on the two parts of the parse tree for 

append/3 highlighted in Figure 10. 



21 
 

 

Figure 10. Highlighted Parse Tree for append/3. 

 

3.2. Compiling a Fact 

The left-most box in Figure 10 contains the subtree for the first clause of append/3: 

append([],L,L). 

It becomes the WAM code: 

 

    append_3::: try_me_else append_3_2 

                allocate 

                get_variable Y0 A0 

                put_constant [] Y1 

                unify_variable Y0 Y1 

                get_variable Y2 A1 

                get_value Y2 A2 

                deallocate 



22 
 

                proceed 

 

The relevant part of the diagnostic output is: 

 

 % clause 

 %   predGen: append/3_1/2 

 |   [ append_3::: try_me_else append_3_2 ] 

 %     predArgGen: list:[] 

 |     [ get_variable Y0 A0 ] 

 %       listGen 

 |       [ put_constant [] Y1 ] 

 |     [ unify_variable Y0 Y1 ] 

 %     predArgGen: var:L 

 |     [ get_variable Y2 A1 ] 

 %     predArgGen: var:L 

 |     [ get_value Y2 A2 ] 

 | [ allocate ] (1) 

 | [ deallocate ] 

 | [ proceed ] 

 

This indicates that the WAMClause() constructor (labeled as clause) called predGen(), 

which called predArgGen() three times (to deal with the fact's three arguments). The first of 

those argument (a list) was processed by listGen(). 

The relevant lines of WAMClause() are: 

 

// global variables 

private ArrayList<WAMStatement> stmts = new ArrayList<>(); 

    // a clause is encoded as a series of WAM statements 

 

 

public WAMClause(ParseNode t, boolean debugOn) 

// parse a CLAUSE or a QUERY 

{ 

  int numSps = 1; 

  this.debugOn = debugOn; 

  if (t.type == ParseType.CLAUSE) { 

    varPrefix = "Y"; 

    predGen(t.head, numSps+2);   // a predicate head 

    int bodyCalls = 0; 

    if (t.tail != null) 

      bodyCalls = bodyGen(t.tail, numSps+2);  // an optional body 

 

    if ((varNames.size() > 0) || (bodyCalls > 0)) { 

      addToStmts(numSps, 1, new WAMStatement(OpWam.ALLOCATE)); 

      addToStmts(numSps, new WAMStatement(OpWam.DEALLOCATE)); 

    } 

    addToStmts(numSps, new WAMStatement(OpWam.PROCEED)); 

  } 

  else if (t.type == ParseType.QUERY) { 



23 
 

    // this branch is called from BuWAM.java 

        : 

  } 

  else  

    System.out.println("Error: expected a CLAUSE or QUERY node"); 

}  // end of WAMClause() 

 

The code generation functions store WAM instructions in a global stmts list by calling 

addToStmts(). The allocate instruction is stored as the first line, while deallocate and 

proceed are appended to the end. 

predGen() does some predicate name conversion (in this case, changing append/3_1/2 in 

the parse tree (see Figure 10) into append_3, and then enters a loop which moves down 

through the ARGS nodes in the tree, calling predArgGen() for each argument. 

predArgGen() generates GET and UNIFY WAM instructions to copy data from the query's 

arguments into the head of the clause (e.g. see Figure 8). The function's code: 

 

private void predArgGen(ParseNode t, int argCount, int numSps)  

// parse the argument subtree of a PRED's ARGS node 

{ 

  if (t.type == ParseType.CONSTANT) 

    addToStmts(numSps, new WAMStatement(OpWam.GET_CONSTANT,  

                                t.value, "A" + argCount)); 

  else if (t.type == ParseType.STR) 

    addToStmts(numSps, new WAMStatement(OpWam.GET_CONSTANT,  

                                "'"+t.value+"'", "A" + argCount)); 

  else if (t.type == ParseType.VARIABLE) { 

    if (isFirstUse(t.value)) 

      addToStmts(numSps, new WAMStatement(OpWam.GET_VARIABLE,  

                         renameVar(t.value), "A" + argCount)); 

    else 

      addToStmts(numSps, new WAMStatement(OpWam.GET_VALUE,  

                         renameVar(t.value), "A" + argCount)); 

  } 

  else if (t.type == ParseType.STRUCTURE) { 

    String v = newVar(); 

    addToStmts(numSps, new WAMStatement(OpWam.GET_VARIABLE,  

                                v, "A" + argCount)); 

    String structVar = structGen(t, numSps+2); 

    addToStmts(numSps, new WAMStatement(OpWam.UNIFY_VARIABLE,  

                                v, structVar)); 

  } 

  else if (t.type == ParseType.LIST) { 

    String v = newVar(); 

    addToStmts(numSps, new WAMStatement(OpWam.GET_VARIABLE,  

                                v, "A" + argCount)); 

    String listVar = listGen(t, numSps+2); 

    addToStmts(numSps, new WAMStatement(OpWam.UNIFY_VARIABLE,  

                                v, listVar)); 

  } 



24 
 

  else  

    System.out.println("Error: not a valid PRED argument node"); 

}  // end of predArgGen() 

 

predArgGen() utilizes a series of if-tests that respond to the type of the node. For example, 

the first argument of the append/3 fact is a list constant ("[]"), which causes execution to 

branch to the final else-if. A get_variable instruction is stored, then several lines are output 

for processing the list by listGen(), and then a unify_variable line is added. The 

get_variable instruction creates a new local variable by calling newVar(), and generates an 

argument variable by appending "A" to an argCount value. 

 

3.3. Compiling a Body Goal 

The highlighted region on the right of Figure10 contains the subtree for the body goal in the 

second clause of append/3: 

append([H|T],L2,[H|L3]) :- append(T,L2,L3). 

It is converted into the WAM code highlighted in the following: 

 

  append_3_2::: trust_me 

                allocate 

                get_variable Y0 A0 

                unify_list Y3 Y2 Y1 

                unify_variable Y0 Y3 

                get_variable Y4 A1 

                get_variable Y5 A2 

                unify_list Y7 Y2 Y6 

                unify_variable Y5 Y7 

                put_value Y1 A0 

                put_value Y4 A1 

                put_value Y6 A2 

                call append_3 

                deallocate 

                proceed 

 

The relevant part of the diagnostic output is: 

 

 % clause 

 %   predGen: append/3_2/2 

 |   [ append_3_2::: trust_me ] 

            : // lines not shown 

 %   bodyGen 

 %     callGen: append/3 

 %       callArgGen: var:T 

 |       [ put_value Y1 A0 ] 

 %       callArgGen: var:L2 

 |       [ put_value Y4 A1 ] 

 %       callArgGen: var:L3 



25 
 

 |       [ put_value Y6 A2 ] 

 |     [ call append_3 ] 

           : // lines not shown 

 

The second clause is also processed by WAMClause() and predGen(), but this time 

bodyGen() deals with its body goals. bodyGen() executes callGen() for each of the call 

nodes of the tree. 

The relevant parts of callGen() are: 

 

private void callGen(ParseNode t, int numSps)  

// parse the CALL subtree 

{ 

  if (t.type == ParseType.CALL) { 

    if (t.head.value.equals("CUT")) { 

      // process a cut 

           : 

    } 

    else {  // deal with an atom head and args in the tail 

      if (t.tail != null) {    // first the arguments 

        ParseNode args = t.tail; 

        int argCount = 0; 

        while (args != null) { 

          if (args.type == ParseType.ARGS) { 

            callArgGen(args.head, argCount, numSps+2); 

            argCount++; 

          } 

          else  

            System.out.println("Error: expected an ARGS node"); 

          args = args.tail; 

        } 

      } 

      // now call the atom 

      if (!Builtin.contains(t.head.value)) { // user-defined pred 

        String[] nameToks = t.head.value.split("/"); 

                        // format is name/arity 

        String name = nameToks[0]; 

        int arity = Integer.parseInt(nameToks[1]); 

        addToStmts(numSps,  

              new WAMStatement(OpWam.CALL, name + "_" + arity)); 

      } 

      else 

        addToStmts(numSps, new WAMStatement(OpWam.CALL, t.head.value)); 

    } 

  } 

  else  

    System.out.println("Error: expected a CALL node"); 

}  // end of callGen() 

 

callGen() converts the arguments of the body goal into WAM code before the goal is 

processed. A while loop invokes callArgGen() for each argument: 



26 
 

 

private String callArgGen(ParseNode t, int argCount, int numSps)  

{  return callArgGen(t, argCount, false, numSps);  } 

 

 

private String callArgGen(ParseNode t, int argCount,  

                           boolean isInner, int numSps)  

// parse the argument subtree of a CALL; 

// isInner means that the argument being processed  

// is inside a list or a structure 

{ 

  String lastVar = null; 

  if (t.type == ParseType.CONSTANT) 

    if (isInner) { 

      lastVar = newVar(); 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_CONSTANT,  

                                  t.value, lastVar)); 

    } 

    else 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_CONSTANT,  

                                t.value, "A" + argCount)); 

  else if (t.type == ParseType.STR) 

    if (isInner) { 

      lastVar = newVar(); 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_CONSTANT,  

                                  "'"+t.value+"'", lastVar)); 

    } 

    else 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_CONSTANT,  

                              "'"+t.value+"'", "A" + argCount)); 

  else if (t.type == ParseType.VARIABLE) { 

    if ( varPrefix.equals("Q") &&  

         isFirstUse(t.value) ) // set Q's name 

      addToStmts(numSps, new WAMStatement(OpWam.CREATE_VARIABLE,  

                             renameVar(t.value), t.value)); 

    lastVar = renameVar(t.value); 

    if (!isInner) 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_VALUE,  

                                  lastVar, "A" + argCount)); 

  } 

  else if (t.type == ParseType.STRUCTURE) { 

    lastVar = structGen(t, numSps+2); 

    if (!isInner) 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_VALUE,  

                                lastVar, "A" + argCount)); 

  } 

  else if (t.type == ParseType.LIST) { 

    lastVar = listGen(t, numSps+2); 

    if (!isInner) 

      addToStmts(numSps, new WAMStatement(OpWam.PUT_VALUE,  

                                lastVar, "A" + argCount)); 

  } 

  else  



27 
 

    System.out.println("Error: unknown arg type for CALL at pos " +  

                       (argCount+1)); 

 

  return lastVar; 

}  // end of callArgGen() 

 

callArgGen() is invoked with an isInner flag, which affects how it generates code. If isInner 

is true then the argument being processed is inside a list or structure, and so any new 

variables should be locals rather than "A" variables. However, aside from this complication, 

callArgGen() is structured in much the same way as predArgGen(). 

 

 

4.  The BuWAM Virtual Machine 

Before the BuWAM 's Java code can be understood, the main data structures employed in the 

standard WAM need to be explained. For this purpose, Warren [7] utilized a diagram 

somewhat similar to the one in Figure 11.  

Figure 11. The WAM in Memory. 

 

The WAM employs five (or six) main data structures, stored at various locations in memory. 

Most of them are stacks which grow in a certain direction as data is added, and use pointers 

to store the current tops of those structures. 

The heap holds data in a tag-based format, organized across multiple words of memory. 

Figure 12 shows the first example of this format from Aït-Kaci's book. 



28 
 

 

Figure 12. The Heap representation of the term p(Z, h(Z,W),f(W). 

 

The stack holds environment and choice point records, which some versions of the WAM 

encoding it as two data structures, as in Figure 11. The environments roughly correspond to 

activation records in virtual machines for imperative languages, holding the variables used 

during the execution of a particular clause, and a return address. The choice point records 

handle the tricky problem of dealing with Prolog's backtracking capabilities.  

The trail is a list of variable bindings which must be rolled back when Prolog backtracks to 

an earlier choice point. The PDL is an area used for temporary calculations during 

unification. 

One drawback of this memory-based model is that its associated algorithms naturally have 

implementations where data fields are denoted by integer offsets from one or more pointers. 

For instance, Aït-Kaci's high-level code for the allocate instruction is expressed as in 

Figure 13. 

 

Figure 13. Aït-Kaci's implementation of allocate. 

 

Arguably Buettcher's version of the WAM is easier to understand because it manipulates 

fields inside objects stored in explicit Java stacks and lists. This point can be seen in Figure 

14, a class diagram for the BuWAM, which corresponds to the memory model in Figure 11. 



29 
 

 

Figure 14. A Class Diagram for the BuWAM. 

 

The BuWAM utilizes a WAMCode object to hold code, several lists of Var objects to point 

to data, a stack of choice point objects, a list of environments, and a Trail object. Unification 

calculations are carried out inside the BuWAM object. 

 

4.1. WAM Initialization 

The BuWAM is supplied with a WAM filename as a command line argument: 

> java -jar BuWAM append.wam 

The file is read in line-by-line, and each line is tokenized and used to instantiate a 

WAMStatement object. The resulting ArrayList inside WAMCode corresponds to the code 

area of the original WAM (see Figure 11). In addition, the labels at the start of each clause 

are stored in a TreeMap along with their 'line' number in the list. 

If the BuWAM is invoked with a "-d" option, then the loaded code and the TreeMap labels 

are printed out, as shown below: 

 

----------------- WAM code ---------------- 

(0000)      append_3::: try_me_else append_3_2 

(0001)                  allocate 

(0002)                  get_variable Y0 A0 

(0003)                  put_constant [] Y1 

(0004)                  unify_variable Y0 Y1 

(0005)                  get_variable Y2 A1 

(0006)                  get_value Y2 A2 

(0007)                  deallocate 



30 
 

(0008)                  proceed 

(0009)    append_3_2::: trust_me 

(0010)                  allocate 

      :   // more lines 

(0022)                  deallocate 

(0023)                  proceed 

-------------------------------------------- 

Labels=Jumps: {append_3=0, append_3_2=9} 

 

  

4.2. Parsing a Query 

The BUWAM's REPL is in its main() function: 

 

// in BUWAM.main() 

String line; 

do { 

  wam.writeln(""); 

  wam.write("?- "); 

  line = wam.readline(); 

  wam.writeln(""); 

} while (wam.runQuery(line)); 

 

runQuery() parses the query string into a WAMClause object, and executes it: 

 

// part of runQuery() 

WAMClause query = parseQuery(queryStr); 

if (query == null) 

  return true;   // an error but return to the REPL 

executeQuery(query);  

 

The stages in parsing a query are summarized by Figure 15. 

 

Figure 15. Parsing a Query. 

 

Most of the steps shown in Figure 15 reuse code from the BuProlog compiler by utilizing 

three 'tricks': the lexical analyzer is passed a string rather than a filename, the recursive 



31 
 

descent parser starts from the query grammar rule rather than the program rule, and the 

generated WAM code is treated like the body of a qqquery/0 clause. 

parseQuery() is complicated by code to print diagnostics and generate pictures, but if that's 

stripped away, there're only three important lines left: 

 

// part of parseQuery() 

BuProlog qc = new BuProlog(queryStr, debugOn); 

ParseNode queryTree = qc.query(); 

WAMClause  query = new WAMClause(queryTree, debugOn); 

 

The BuProlog constructor determines that the query string isn't a filename, and sets up the 

lexer and parser differently: 

 

public BuProlog(String fnm, boolean debugOn) throws IOException 

{  

  this.debugOn = debugOn; 

  if (fnm.endsWith(".pro")) { 

    br = new BufferedReader(new FileReader(fnm)); 

    lexer = new Lexer(br, true); // always show lex output 

  } 

  else { 

    queryParsing = true; 

    br = new BufferedReader(new StringReader(fnm));  

                // assume the input is a query string 

    lexer = new Lexer(br, debugOn); 

  } 

  getToken(); 

} 

 

The parser is driven by BuProlog.query(): 

 

public ParseNode query() throws IOException 

// EBNF:  query ::=  body '.' 

{ 

  int numSps = 1; 

  ParseNode tree = new ParseNode(); 

  tree.type = ParseType.QUERY; 

  tree.head = new ParseNode(); 

  tree.tail = new ParseNode(); 

 

  body(tree.tail, numSps+1);  

  match(tok, Toks.PERIOD); 

  if (tok.symbol() == Toks.EOF)  { 

    tree.head.type = ParseType.PREDICATE; 

    tree.head.tail = null; 

    tree.head.head = new ParseNode(); 

    tree.head.head.type = ParseType.ATOM; 

    tree.head.head.value = "qqquery/0_1/1";  // /arity_count/total 

    tree.head.tail = null; 



32 
 

  } 

  else { 

    writeln("Parsing failed"); 

    tree = null; 

  } 

  br.close(); 

 

  return tree; 

}  // end of query() 

  

The query is processed by BuProlog.body() which builds a tree that's added to nodes 

representing the head of the clause qqquery :- body. Rather confusingly, the name of this 

predicate must be "qqquery/0_1/1", since the arity, clause index, and total number of clauses 

must be included. If BuWAM.jar is invoked with the "-p" option, a picture of the parse tree is 

stored in queryParse.png. Figure 16 shows the tree generated for ?-append(X,Y,[1,2,3]). 

 

Figure 13. The parse tree for ?- append(X,Y,[1,2,3]). 



33 
 

 

The top-level "query" node becomes important when the tree is passed to the WAMClause 

constructor back in BuWAM.parseQuery(). The constructor employs a two-way branch 

which determines if the node type is ParseType.CLAUSE or ParseType.QUERY: 

 

public WAMClause(ParseNode t, boolean debugOn) 

{ 

  int numSps = 1; 

  this.debugOn = debugOn; 

  if (t.type == ParseType.CLAUSE) { 

    // this branch is used by BuProlog.java 

    varPrefix = "Y"; 

        :   // lines not shown 

  } 

  else if (t.type == ParseType.QUERY) { 

    // this branch is called from BuWAM.java 

    varPrefix = "Q"; 

    predGen(t.head, numSps+2);   // a dummy predicate name (qqquery) 

    bodyGen(t.tail, numSps+2);   // a body 

    addToStmts(numSps, new WAMStatement(OpWam.HALT)); 

  } 

  else  

    System.out.println("Error: expected a CLAUSE or QUERY node"); 

}  // end of WAMClause() 

 

WAMClause uses the existing  predGen() and bodyGen() functions to generate WAM code, 

but with the varPrefix global set to "Q" rather than "Y". This means that "Q" (query) 

variables will be used rather than "Y" (permanent) variables in the WAM statements.  

The code generated for qqquery :- append(X,Y,[1,2,3]) is given below, with the 

addition of numbered comments: 

 

   qqquery_0::: trust_me 

 

                create_variable Q0 X    % 1 

                put_value Q0 A0         % 2 

 

                create_variable Q1 Y    % 3 

                put_value Q1 A1         % 4 

 

                put_constant 1 Q2       % 5 

                put_constant 2 Q3       % 6 

                put_constant 3 Q4       % 7 

                put_constant [] Q5      % 8 

                unify_list Q6 Q4 Q5     % 9 

                unify_list Q7 Q3 Q6     % 10 

                unify_list Q8 Q2 Q7     % 11 

                put_value Q8 A2         % 12 

 

                call append_3 



34 
 

                halt 

 

These comment numbers also appear in Figure 14 to label the bindings that match the query 

to a goal. 

 

Figure 14. Matching the body of qqquery:-append(X,Y,[1,2,3]). 

 

The create_variable instruction is utilized on lines (1) and (3) to assigns printable names 

to Q variables. Q0 is given the name "X", and Q1 gets "Y". These names mean that although 

there are nine Q variables in Figure 14, only the bindings for Q0 and Q1 will be printed when 

the query succeeds.There's no create_variable in the original WAM, although its 

put_variable is somewhat similar. 

  

4.3. Executing a Query 

The query is executed by BuWAM.executeQuery(), which is shown below (but without its 

copious diagnostics code): 

 

private void executeQuery(WAMClause query) 

{ 

  wc.deleteQuery();   // remove any previous query from the program code 

 

  // add the query to the end of the program code 

  wc.addQuery(query);  

 

  pc = wc.getQueryPos(); 

  String answer = ""; 

  do { 

    runWAM(); 



35 
 

    if (queryFailed) {  

      writeln("No."); 

      break; 

    } 

 

    // display query variable bindings 

    writeln(getQVars()); 

 

    // if there are some choicepoints,  

    // ask the user if they should be tried via backtracking 

    if (!choices.isEmpty()) { 

      write("\nMore? (y/n) "); 

      answer = readline(); 

    } 

    else 

      break; 

 

    // has the user decided to backtrack? 

    if (answer.equals("y") ||  answer.equals("yes")) 

      backtrack(); 

  } while ( answer.equals("y") || answer.equals("yes")); 

}  // end of executeQuery() 

 

The function begins by deleting any earlier query stored with the program code and then adds 

the current query. The query is added after the program, as reflected by the line numbers in 

the diagnostic output: 

 

(0024)     qqquery_0::: trust_me 

(0025)                  create_variable Q0 X 

(0026)                  put_value Q0 A0 

(0027)                  create_variable Q1 Y 

(0028)                  put_value Q1 A1 

(0029)                  put_constant 1 Q2 

(0030)                  put_constant 2 Q3 

(0031)                  put_constant 3 Q4 

(0032)                  put_constant [] Q5 

(0033)                  unify_list Q6 Q4 Q5 

(0034)                  unify_list Q7 Q3 Q6 

(0035)                  unify_list Q8 Q2 Q7 

(0036)                  put_value Q8 A2 

(0037)                  call append_3 

(0038)                  halt 

-------------------------------------------- 

Labels=Jumps: {append_3=0, append_3_2=9, qqquery_0=24} 

 

The append/3 predicate occupies lines 0 to 23, and the query is at lines 24 to 38.  

runWAM() may be called several times for each query if there are choice points in the result 

and the user requests alternative answers. 



36 
 

runWAM() enters a loop to execute the lines of WAM code in the query, continuing until the 

program counter is negative (indicating an error) or the query's halt instruction is reached. In 

outline, the function has the form: 

 

// globals 

private int pc = 0;        // program counter 

 

 

public void runWAM() 

{ 

  while (pc >= 0) {  // pc < 0 happens on a jump error 

    queryFailed = false; 

    WAMStatement s = wc.getStatement(pc);  

 

    OpWam op = s.getOp(); 

    if (op == OpWam.PUT_VALUE)  

      put_value(s.getArg(0), s.getArg(1)); 

    else if (op == OpWam.PUT_CONSTANT)  

      put_constant(s.getArg(0), s.getArg(1)); 

          : // many more lines 

          : 

    else if (op == OpWam.CALL) 

      call(s.getArg(0), s.getJump()); 

    else if ((op == OpWam.TRY_ME_ELSE) || 

             (op == OpWam.RETRY_ME_ELSE) ) 

      try_me_else(s.getLabel(), s.getJump()); 

        :  // more lines 

        : 

    else if (op == OpWam.HALT) 

      break; 

    else if (op == OpWam.NO_OP)  

      pc++; 

    else {  

      writeln("Invalid op on line " + String.format("%04d", pc)); 

      backtrack(); 

    } 

  }  // end of while (pc >= 0) 

   

  if (queryFailed) { 

    while (!choices.isEmpty())  

      backtrack(); 

  } 

} // end of runWAM() 

 

I'll discuss the processing of the instructions by dividing them into the categories used in 

Table 1: Get, Put, Unification, Calling, Branching, and Cuts. 

 

4.4. Get and Put Instructions 



37 
 

When a goal is matched against the head of a clause, get instructions load data from the goal's 

variables (A's) into the clause's variables (Y's).  

Before calling a goal in the body of a clause, put instruction load data from the clause's 

variables (Y's) into goal arguments (A's).   

AS a consequence, both kinds of instructions utilize the Var class: 

 

public class Var 

{ 

  public VarType type;     //   PERM, ARG, QUERY 

  public enum ValType {REF, CON, LIST, STRUC} 

  public ValType tag;        

  public int index;       // number for the var e.g. V0, V1, etc 

  public String name = null;      

                          // name of var when it's a QUERY variable 

  public String con;      // content when this var is a CON 

  public Var ref;         // content when it is a REF 

  public Var head, tail;     

              // used when the var points to a list or structure 

  public ChoicePoint cutLevel;   

             // used by the cut and get_level WAM instructions 

 

             :  // more fields and methods 

} 

 

VarType is an enumeration for the three kinds of variables used in this WAM: permanent (i.e. 

local) variables inside a clause (PERM), goal arguments (ARG), and variables in a user's 

query (QUERY). 

The ValType enumeration ({REF, CON, LIST, STRUC}) corresponds to the data tags used 

in the original WAM (e.g. see Figure 12).   

If a Var object points to another variable rather than containing its own data (i.e., its tag field 

value is REF), then the reference is stored in the ref field. For the special case when the 

variable is unbound, ref points to the object itself (i.e. ref==this).  

If the variable has been assigned a constant, then the tag field is set to CON, and the con 

field holds that constant as a string. In fact, a constant can be an atom, integer, or string, but 

this's determined at runtime by parsing the contents of the field. 

A variable referring to a list or structure is implemented as a binary tree of Var objects, with 

the help of the head and tail fields. For a structure (the tag field is STRUC), then the head 

field will point to a Var object holding the functor name, and tail will point to an object 

linked to a list of the arguments. 

Every variable name is a letter and integer (e.g. Y0, A5, Q10), and the letter is mapped to a 

VarType ('Y' for PERM,  'A' for ARG, and 'Q' for QUERY) in its type field, and the integer 

is stored in the index field. The index is also used to position the Var object in its ArrayList.  



38 
 

Only QUERY variables use the Var's name field, to hold the user's name for that variable. For 

example in ?-append(X,Y,[1,2,3]), the name field of the Var object for Q0 will be 

assigned the name "X", and Q1 will get "Y".  

All of the put and get instructions work in a similar way; put_value and get_value are 

typical: 

 

private void put_value(String sv, String sAv) 

// put_value v Av. Copy the contents of v into Av 

{ Var v = varLookup(sv); 

  Var Av = varLookup(sAv); 

  Av.copyValue(v); 

  pc++; 

}  

 

 

private void get_value(String sv, String sAv) 

// get_value v Av. Does v = Av? 

{  unify_variables(sv, sAv);  } 

 

varLookup() maps a variable name (e.g. Y0) to a Var object, and then uses a suitable method 

from the Var class to update its fields. Some of the instruction, such as get_value, utilize the 

unification functions, which are described next. 

 

4.5. Unification 

Unification in the original WAM is implemented somewhat differently from the approach 

used in Buettcher's WAM. It works implicitly on the current structure being examined, and 

also employs a read/write mode. The read mode is used when a term is being pattern matched 

against, while write mode is utilized when the term is being constructed. However, 

Buettcher's WAM uses explicit arguments in its unification instructions, and doesn't utilize 

modes. The differences can be seen by considering the 'standard' WAM code generated for 

the second clause of append/3  

append([H|T1],  L2, [H|T2]) :- append (T1, L2, T2).  

The code would look something like: 

 

append/3: trust_me 

 allocate 

 get_list A1    % [ 

 unify_variable Y4   % H | 

 unify_variable A1   % T1],  L2, 

 get_list A3    % [ 

 unify_value  Y4    % H | 

 unify_variable A3   % T2] 

 call append/3   % :- append(T1,L2,T2) 

 deallocate 

 



39 
 

By comparison, the BuWAM outputs: 

 

append_3_2::: trust_me    % append(A0, A1, A2) :- ... 

              allocate 

              get_variable Y0 A0  % Y0 :- A0 

              unify_list Y3 Y2 Y1  % Y3 = [Y2 | Y1 ] 

              unify_variable Y0 Y3  % Y0 = Y3 

              get_variable Y4 A1  % Y4 :- A1 

              get_variable Y5 A2  % Y5 :- A2 

              unify_list Y7 Y2 Y6    % Y7 = [Y2 | Y6] 

              unify_variable Y5 Y7  % Y5 = Y7 

              put_value Y1 A0   % A0 :- Y1 

              put_value Y4 A1   % A1 :- Y4 

              put_value Y6 A2   % A2 :- Y6 

              call append_3    % ... :- append (A0, A1, A2) 

              deallocate 

              proceed 

 

In the standard WAM, get_list loads the first input argument from the heap, and sets the 

unification mode to read (pattern matching). The subsequent calls to unify_variable only 

include one argument , and implicitly access first the head and then the tail. A similar 

approach is used to pattern match on the third input argument (A3).  In addition, the WAM is 

clever enough to set up A1 and A3 so they are ready to be passed to the call to append/3 at 

the end of the clause without the need for explicit calls to put_value. 

The BuWAM code is longer, but perhaps easier to understand since each line shows all the 

variables being used, and the lack of optimizations makes those lines simpler.  

As Table 2 indicates, there are three unification operations in the BuWAM: 

unify_variable, unify_list, and unify_struc. Since they all work in a similar way, I'll 

only consider unify_variable which calls the unify_variables() support function: 

 

private void unify_variables(String s1, String s2) 

// v1 = v2  

{ Var v1 = varLookup(s1); 

  Var v2 = varLookup(s2); 

  if (unify(v1, v2)) 

    pc++; 

  else 

    backtrack(); 

} // end of unify_variables() 

 

The variable names are mapped to their Var objects by varLookup() and then unify() is 

called. Its success means that execution can continue, which is handled by incrementing the 

program counter; failure triggers a call to backtrack().  

unify() compares the two Var objects: 

 

private boolean unify(Var v1, Var v2) 



40 
 

{ 

  if ((v1 == null) || (v2 == null))  

    return false; 

 

  v1 = v1.deref(); 

  v2 = v2.deref(); 

  if (v1 == v2)  

    return true; 

 

  if (v1.tag == Var.ValType.REF) { 

    trail.add(v1); 

    v1.copyValue(v2); 

    return true; 

  } 

 

  if (v2.tag == Var.ValType.REF) { 

    trail.add(v2); 

    v2.copyValue(v1); 

    return true; 

  } 

 

  if ((v1.tag == Var.ValType.CON) && (v2.tag == Var.ValType.CON)) 

    return (v1.con.equals(v2.con)); 

 

  if (((v1.tag == Var.ValType.LIST) && (v2.tag == Var.ValType.LIST)) ||  

      ((v1.tag == Var.ValType.STRUC) && (v2.tag == Var.ValType.STRUC))) 

    if ((unify(v1.head, v2.head)) &&  

       (unify(v1.tail, v2.tail))) 

      return true; 

 

  return false; 

} // end of unify() 

 

A variable may contain data, point to itself (i.e. be unbound), or point to another variable 

which holds the data. This latter case is handled by calling Var.deref() which follows links 

until data is found, or a self-reference is detected: 

 

// inside the Var class 

public Var deref() 

{ 

  if ((tag == ValType.REF) && (ref != this)) { 

    Var v = ref; 

    while ((v.tag == ValType.REF) && (v.ref != v)) 

      v = v.ref; 

    return v; 

  } 

  else 

    return this; 

} // end of deref() 

 



41 
 

Back in unify(), the Var objects' tag fields (which will be CON, LIST, or STRUC) are used 

for matching. The processing of a LIST or STRUC is handled by recursive calls to unify() to 

deal with the head and tail fields in the Var objects. 

 

The Trail 

If one of the variables is assigned the value of the other in unify(), that variable is added to 

the WAM's trail: 

 

// in unify() 

  : 

  if (v1.tag == Var.ValType.REF) { 

    trail.add(v1); 

    v1.copyValue(v2); 

    return true; 

  } 

 : 

 

The trail (see Figures 11 and 14) stores a reference to the bound variable in an ArrayList, so 

that it's easy to undo that binding during backtracking. 

Rolling back a binding is straight forward in logic languages since they're single assignment 

– a variable can only be bound once. This means that undoing that binding only requires 

resetting its tag field to REF and making the object point to itself. This is done by rollback() 

in the Var class: 

 

public void rollbackTo(int pos) 

{ 

  for (int i = contents.size()-1; i >= pos; i--) { 

    Var v = contents.get(i); 

    if (v != null) { 

      v.tag = Var.ValType.REF; 

      v.ref = v;    // an unbound var points to itself 

      v.refersToArg = -1; 

    } 

  } 

}  // end of rollbackTo() 

 

rollback() is passed an index into the trail's list, and all the variables between that position 

and the end of the list are reset. The v.refersToArg field is only used by the diagnostics 

code. 

 

4.6. Calling Predicates 

Table 2 lists five instructions related to calling: call, proceed, allocate, deallocate, and 

halt. I'll look at the first four here. 



42 
 

The relevant branch in runWAM() that process the call instruction is: 

 

// in runWAM() in BuWAM.java 

  : 

    else if (op == OpWam.CALL) { 

      nodesCount++; 

      call(s.getArg(0), s.getJump()); 

    } 

  : 

 

The nodesCount variable is used by the GraphViz drawing code, so isn't relevant to this 

explanation. The s variable points to the current WAMStatement object, which for a call 

statement stores the label of the predicate being called and the line number where the call 

should jump to. 

The call() function, ignoring its diagnostics and graph printing lines, is: 

 

private void call(String callLabel, int pos) 

{  

  if (pos >= 0) {   

    cp = pc+1;  // return to next line after current pc location 

    if (choices.empty()) 

      cutPoint = null; 

    else 

      cutPoint = choices.peek();   // used by a possible future cut  

    pc = pos; 

  } 

  else  // pos < 0 indicates either a built-in predicate or an error 

    if (Builtin.contains(pos)) 

      callBuiltins(pos); 

    else { 

      // System.out.println("Error: Could not identify call label"); 

      backtrack(); 

    } 

} // end of call() 

 

The crucial line is: 

pc = pos; 

which sets the program counter to the line number where the predicate begin. However, if pos 

is negative, then it may indicate that the call is to a built-in predicate, and callBuiltins() is 

executed. If the value doesn't match a built-in's opcode then call fails, which triggers 

backtracking. 

One other feature of the call instruction is the setting up of the mechanism used to support 

cuts, which I'll explain later. 

 

4.6.1. Processing Built-ins 



43 
 

The built-ins supported by the BuWAM are defined in the Builtin enum. Each enumeration 

has a string-based name and a negative opcode, such as: 

 

// in Builtin.java 

    : 

  VAR("var", -14), 

  NONVAR("nonvar", -15), 

  FAIL("fail", -16),                                              

  IS("is", -20), 

    : 

 

Back in the BuWAM class, callBuiltins() consists of a large set of if-branches that test the 

opcode. I'll look briefly at how the unify/2 and is/2 built-ins are processed. These can be 

tested inside the BuWAM by typing queries in the REPL, as in Figure 15. 

 

Figure 15. Using unify/2 and is/3. 

 

The relevant branches for unify/2 and is/2 inside callBuiltins() are: 

 

// in callBuiltins() in BuWAM.java 

   : 

  else if (b == Builtin.IS) {    // is(Result, v). 

    is( args.get(0), args.get(1)); 

  } 

   : 

  else if (b == Builtin.UNIFY) { 



44 
 

    // unify(v1,v2) 

    Var v1 = args.get(0); 

    Var v2 = args.get(1); 

    if (unify(v1,v2)) 

      pc++; 

    else 

      backtrack(); 

  }  

    : 

 

unify() is passed two input variables by calling args.get(); args is a global ArrayList of Var 

objects for the goal arguments. If unify() succeeds then the program counter is incremented, 

while failure triggers backtracking. These responses to success and failure are used by almost 

all of the built-ins. 

is/2 is handled by is(), which is passed two arguments – the first is the output variable, and 

the second a term representing the arithmetic expression.  The code for is(): 

 

private void is(Var vRes, Var v)  

// vRes is assigned the result of evaluating v 

{ 

  v = v.deref(); 

  vRes = vRes.deref(); 

 

  int result = evalCalc(v); 

  if (vRes.tag == Var.ValType.REF) {   // bind vRes to the result 

    trail.add(vRes); 

    vRes.tag = Var.ValType.CON; 

    vRes.con = "" + result; 

    pc++; 

  } 

  else if (vRes.tag == Var.ValType.CON) { 

    int val = parseInt(vRes); 

    if (val == result) 

      pc++; 

    else 

      backtrack(); 

  } 

  else { 

    System.out.println("Error: is/2: result must be var or const"); 

    backtrack(); 

  } 

}  // end of is() 

 

Both of the variables are dereferenced to ensure that if they point to data then its directly 

accessible. Most of the built-ins start in this way.  

eventCalc() evaluates the term argument using a conventional recursive evaluation of the Var 

object (which may be a constant (with a CON tag) or a structure (with a STRUC tag)). The 

result is an integer, which is assigned to the vRes variable, and noted on the trail. However, 



45 
 

the vRes variable may be bound (as in the last example of Figure 15), which will mean that 

vRes is tagged as a constant. This case is dealt with by testing if the vRes value is the same as 

the calculated one. 

 

4.6.2. Proceed 

The proceed instruction is the WAM equivalent of returning from a function in a 

conventional language, and is implemented in a similar way. The code for processing 

proceed is 15 lines long, but 14 of those are for generating diagnostics and graphs. If they're 

ignored, the 'proceed' branch in runWAM() is only: 

 

// in runWAM() in BuWAM.java 

    : 

    else if (op == OpWam.PROCEED)    // return from a clause 

      pc = cp;  

    : 

 

pc is the program counter and cp the continuation pointer. 

 

4.6.3.  Allocating and Deallocating Environments 

The WAM code for a clause is bracketed by a call to allocate at the start and a call to 

deallocate near its end.  For example, consider the first clause of append/3: 

 

    append_3::: try_me_else append_3_2 

                allocate 

                get_variable Y0 A0 

                put_constant [] Y1 

                unify_variable Y0 Y1 

                get_variable Y2 A1 

                get_value Y2 A2 

                deallocate 

                proceed 

 

allocate create an environment for the clause's variables, while deallocate restore the 

previous environment. In this respect, an environment is equivalent to an activation record (or 

frame) used by virtual machines for imperative languages. There's a major quirk however – 

deallocate (despite what it's name may suggest) doesn't delete the current environment 

when the previous one is reinstated. 

Aït-Kaci [2] explains the issue using the following snippet of Prolog: 

 

a :- b(X), c(X). 

b(X) :- e(X). 

c(1). 

e(X) :- f(X). 



46 
 

e(X) :- g(X). 

f(2). 

g(1). 

 

When the query ?-a is executed, the stack of environments shown in Figure 16 will be 

created by the time that f/1 is called. In addition, the choice point stack will have gained a 

record for e/1 since there are two "e" clauses that can be tried. Amongst the data stored in the 

choice point is a pointer (called CE usually) that links back to the environment that created 

the "e" environment. 

 

Figure 16. Executing f/1 in the query ?-a. 

 

As the query continues, X will be bound to 2 inside f/1, and then execution will start 

returning, causing the "f", "e", and "b" environments to be deallocated until execution is back 

in a/1, and c/1 is about to be called with X == 2. This situation is shown in Figure 17. 

Figure 17. About to execute c/1 in the a/0 clause. 

 

If environments were really deleted when they were deallocated then there's a problem due to 

the "b" environment's deletion. When the c/1 goal is executed, it fails because X == 2, and 

the WAM will want to backtrack to the "e" choice point. This requires the resumption of the 

"b" environment (via the CE pointer) so that b/1 can call the second clause of e/1. 

Unfortunately, the "b" environment no longer exists! 



47 
 

The BuWAM's solution is to have the deallocate instruction move the E pointer  down the 

environments stack as it 'deallocates' the "f"," e", and "b" environments but not to delete 

those records. This situation is shown in Figure 18. 

 

Figure 18. About to execute c/1 in the a/0 clause. 

 

One objection to this approach is the needless retention of the "f" and "e" environments. 

However, they'll only hang around until the "b" environment is reactivated. Part of its code 

(which will be shown later) tidies up the environment list, deleting those deallocated records 

that are above the environment record used by the top-most choice point (i.e. the "e" choice 

point in Figure 18). This clean-up process results in Figure 19, after the removal of the "f" 

and "e" records. 

Figure 19. Reactivating the "b" environment. 

 

This approach differs somewhat from the one outlined by Aït-Kaci [2], which combines the 

environment and choice point stacks into a single data structure. In that situation, there's no 

need for an explicit CE pointer from the "e" choice point to the "b" environment since the "e" 

choice point rests directly on top of that environment. Deallocation becomes a matter of 

deleting an environment record only if there isn't a choice point somewhere above it on the 

stack. 



48 
 

The allocate instruction is processed by allocate() in the BuWAM class: 

 

// globals 

private ArrayList<Env> envList = new ArrayList<>(); 

private int envIdx; 

private Stack<ChoicePoint> choices = new Stack<>(); 

 

 

private void allocate() 

{  

  String clauseLabel = getLineLabel(pc-1);   

     // the clause's label is on the line before "allocate" 

 

  Env env = new Env(clauseLabel, cp, envIdx, tryNodeNm, nodesCount); 

 

  // really delete old env. records 

  if ((envIdx > -1) && (!choices.isEmpty())) { 

    int ce = choices.peek().envIdx;   

    if (envIdx > ce)   // delete unneeded environments 

      envList.subList(envIdx+1, envList.size()).clear(); 

  } 

  envList.add(env); 

  envIdx = envList.size()-1;   // set to top of list 

 

  pc++; 

}   // end of allocate() 

 

A new Environment object is added to the global envList. Rather than employ an "E" pointer 

as shown in the previous figures, the top of the list is recorded as an integer index, stored in 

the envIdx global. 

The if-test in the middle of allocate() is where real environment deletion is performed. It 

looks at the top-level choice point and gets its ce value. If envIdx is larger than ce then a 

situation like Figure 16 exists, and the extra environment objects can be deleted.  

The Environment record created inside allocate() takes five arguments, but three of those are 

for diagnostics reporting. For the virtual machine's execution, the important arguments are 

the cp (continuation pointer) return address, and the environment index. Each Environment 

object also stores the clause's permanent variables, which are added to the object as they're 

encountered in the WAM instructions that follow the allocate line.  

The deallocate instruction is processed by deallocate(), and is quite long due to all the 

diagnostics and graphing code. If all that is elided, the function becomes: 

 

private void deallocate() 

{  

  cp = envList.get(envIdx).cp;    

                // the continuation pointer (the return address) 

  envIdx = envList.get(envIdx).ce;   

  pc++; 



49 
 

}  // end of deallocate() 

 

The continuation pointer and environment index stored by the allocate instruction are 

retrieved, and used to reset those globals in the WAM. Note that deallocate() does not delete 

the environment object. 

 

4.7. Branching Instructions 

The BuWAM has two branching instructions: try_me_else and trust_me. The WAM 

described by Aït-Kaci [2] also has retry_me_else, but Buettcher folded its functionality into 

try_me_else. A third operation related to branching is backtracking, as implemented by 

backtrack(). 

try_me_else and backtrack() are closely related – the former creates a choice point, pushing 

it onto a global choices stack, while backtrack() pops the top-most choice point from that 

stack to let Prolog backtrack. 

The choice point is the most complicated data structure in the standard WAM explained by 

by Aït-Kaci. Table 3 lists its fields, along with B0 for supporting cuts. 

Table 3. The Fields of a Choice Point. 

 

The first column of Table 3 are the standard WAM names for the fields, which denote 

pointers to different data structures stored in memory. If you look back to Figure 11, you'll 

see CP, H, B, and TR, while CE appears in Figures 16 and 19. BP points to the label of the 



50 
 

next clause to try, and so links into the WAM code area of Figure 11. B0 is the cut register 

which I'll explain in the "cut" section next.  

The BuWAM version of a choice point is an object created by the ChoicePoint class, which is 

given below: 

 

public class ChoicePoint 

{ 

  public ArrayList<Var> args;   // the ARG vars 

 

  public int envIdx;            // index into environment list 

                                // for the previous clause's PERM vars; 

                                // called CE in the original WAM 

 

  public int cp;                // continuation pointer 

                                // (i.e. the return address) 

 

  public int trailIdx;          // current trail index for undoing 

                                // variable bindings; 

                                // called TR in the original WAM 

 

  public int elseLabel;         // address of next clause to try 

                                // during backtracking; 

                                // called BP in the original WAM 

 

  public ChoicePoint cutPoint;  // used to backtrack over a cut; 

                                // called B0 in the original WAM 

 

  // diagnostics data fields 

        : 

 

  public ChoicePoint(ArrayList<Var> vargs) 

  { 

    args = new ArrayList<>(); 

    for (int i = 0; i < vargs.size(); i++) 

      args.add(new Var(vargs.get(i))); 

  } // end of ChoicePoint() 

 

} // end of class ChoicePoint 

 

There's a fairly straight forward mapping between a choice point in the standard WAM and 

the BuWAM. The most major change is the absence of the B and H fields. The previous 

choice point (B) is instead implemented by peeking at the record below this one in the 

choices stack. Also, the BuWAM doesn't have an explicit heap, since Var objects utilize the 

Java heap to store data. Another difference is that some of the fields are encoded as indices 

(i.e. envIdx and trailIdx) rather than as pointers. 

 

try_me_else and Backtracking 



51 
 

The try_me_else instruction is processed by try_me_else(), which creates a new 

ChoicePoint object and pushes it onto the global choices stack: 

 

private void try_me_else(String callLabel, int elseLabelIdx) 

{  

  // build a choice point 

  ChoicePoint choicePt = new ChoicePoint(args); 

  choicePt.label = callLabel; 

  choicePt.trailIdx = trail.getLength(); 

  choicePt.cp = cp; 

  choicePt.elseLabel = elseLabelIdx;   // address of next clause 

  String elseLabel = getLineLabel(elseLabelIdx); 

  choicePt.cutPoint = cutPoint; 

  choicePt.envIdx = envIdx;     

 

  choicePt.callNodeNm = callNodeNm; 

  choicePt.tryCount = nodesCount; 

 

  choices.push(choicePt);   // store the choice point 

  pc++;  // start the clause's code 

}  // end of try_me_else() 

 

The popping of a ChoicePoint object from the stack, and the restoration of its data is dealt 

with by backtrack() : 

 

private void backtrack() 

{ 

  queryFailed = true; 

  if (!choices.isEmpty()) { 

    // restore earlier state before trying next clause... 

    int choicePos = choices.size()-1; 

    ChoicePoint choicePt = choices.pop(); 

 

    args = choicePt.args;      // reset the clause head's arguments 

 

    int tIdx = choicePt.trailIdx;   // rollback the trail of bindings 

    trail.rollbackTo(tIdx); 

 

    cp = choicePt.cp;          // reset the return address 

    pc = choicePt.elseLabel;   // set addr of the next clause to try 

    callNodeNm = choicePt.callNodeNm; 

    cutPoint = choicePt.cutPoint; 

    envIdx = choicePt.envIdx; 

  } 

  else {   // should not happen 

    trail.rollbackTo(0); 

    pc = -1; 

  } 

} // end of backtrack() 

 



52 
 

This is not exactly the approach used in Aït-Kaci's WAM which utilizes a simpler backtrack() 

function which only adjusts the program counter and the cut register. The rest of the resetting 

is carried out by the WAM's branching instructions, such as retry_me_else and trust_me. 

The relocation of this behavior to backtrack() in the BuWAM means that it's possible to 

remove retry_me_else from its instruction set, and utilize try_me_else instead. Also, the 

implementation for trust_me is greatly shortened. Ignoring the diagnostics code, trust_me 

is handled by a one-liner in runWAM(): 

 

  : 

else if (op == OpWam.TRUST_ME)  

  pc++; 

  : 

 

4.8. Dealing With Cuts 

Cuts weren't part of Warren's original WAM design [7], and are only introduced near the end 

of Aït-Kaci text [2], but the changes are quite minimal – two new instructions, get_level 

and cut, and a global variable called the cut register (usually called B0, but renamed 

cutPoint in the BuWAM). The Var class must also be extended with a new field. 

Before each goal is called, the cutPoint global is linked to the current choice point. In the 

BuWAM, this is implemented inside call() which handles the call instruction.  

 

// in BuWAM.java 

// global  

private ChoicePoint cutPoint = null;  

 

// in call() 

cutPoint = choices.peek();  

 

Also, when a ChoicePoint object is created for a clause in try_me_else(), cutPoint is stored 

inside that object's cutPoint field. Subsequently, if backtrack() restores that choice point, its 

cutPoint field is used to reset the global cutPoint: 

 

// in try_me_else() 

choicePt.cutPoint = cutPoint; 

 

// in backtrack() 

cutPoint = choicePt.cutPoint; 

 

All this storing and restoring means that cutPoint always points to the choice point existing 

when the clause containing the cut was first called. 

cutPoint is actually used by the WAM get_level and cut instructions, which are best 

explained by looking at how Prolog code using a "!" is converted into WAM instructions. 

The following list merging predicate employs several cuts: 



53 
 

 

merge([X|Xs],[Y|Ys],[X|Zs]) :- 

  lt(X,Y), !,  

  merge(Xs,[Y|Ys],Zs). 

merge([X|Xs],[Y|Ys],[X,Y|Zs]) :- 

  eq(X,Y), !,  

  merge(Xs,Ys,Zs). 

merge([X|Xs],[Y|Ys],[Y|Zs]) :- 

  gt(X,Y), !,  

  merge([X|Xs],Ys,Zs). 

merge(Xs,[],Xs) :- !. 

merge([],Xs,Xs) :- !. 

 

The first clause is translated into the following WAM code: 

 

merge_3::: try_me_else merge_3_2 

           allocate 

           get_level Y11 

           get_variable Y0 A0 

           unify_list Y3 Y2 Y1 

           unify_variable Y0 Y3 

           get_variable Y4 A1 

           unify_list Y7 Y6 Y5 

           unify_variable Y4 Y7 

           get_variable Y8 A2 

           unify_list Y10 Y2 Y9 

           unify_variable Y8 Y10 

           put_value Y2 A0 

           put_value Y6 A1 

           call lt 

           cut Y11 

           put_value Y1 A0 

           unify_list Y12 Y6 Y5 

           put_value Y12 A1 

           put_value Y9 A2 

           call merge_3 

           deallocate 

           proceed 

 

The compilation of the "!" causes the addition of a call to get_level at the start of the 

clause, and a call to cut at the place where the "!" occurred. 

get_level stores cutPoint in a permanent variable (Y11 in the code above). This is dealt 

with by get_level() in BuWAM.java: 

 

private void get_level(String sv) 

{  

  Var v = varLookup(sv); 

  v.cutLevel = cutPoint; 

  pc++; 



54 
 

}  

 

The subsequent cut instruction is handled by cut(), which is passed this variable (i.e. Y11): 

 

// globals 

private Stack<ChoicePoint> choices = new Stack<>(); 

 

 

private void cut(String sv) 

{  

  Var v = varLookup(sv); 

  ChoicePoint cpt = v.cutLevel; 

  // discard all the choicepoints from the top of 

  // the stack down to cpt.  

  if (cpt != null) { 

    ChoicePoint currCpt = choices.peek(); 

    while (!cpt.equals(currCpt)) { 

      choices.pop(); 

      currCpt = choices.peek(); 

    } 

  } 

  else 

     choices.clear(); 

  pc++; 

}  // end of cut() 

 

The cutPoint value stored in the variable is retrieved, and used to rollback the global choice 

points stack, discarding all the choices made since a goal matched with this clause up to the 

"!' goal within the clause. 

 

 

5. Using the Diagnostics output 

This section examines how the diagnostics output from BuWAM can be used alongside the 

graph diagrams to better understand the workings of the virtual machine. 

The following two predicates implement list permutation in list.pro: 

 

perm([], []). 

perm(L, [X|P]) :- 

  del(X, L, L1), 

  perm(L1, P). 

 

del(A, [A|List], List). 

del(A, [B|List], [B|Listl]) :- 

  del(A, List, Listl). 

 



55 
 

The query shown in Figure 19 generates all the permutations of the list [1,2,3]. 

Figure 19. Permutations of [1,2,3]. 

 

If BuWAM is instead invoked with the –d and –p flags, then diagnostics and a graph of the 

execution tree will be created: 

> java -jar BuWAM.jar –dp lists.wam 2> debug.txt 

  



56 
 

Figure 20 shows the execution tree when ?-perm([1,2,3],P) is asked to produce two 

answers. 

Figure 20. An Execution Tree for ?- perm([1,2,3], P). 

 

For this example, we'll look more closely at node (4) in Figure 19, a call to del/3. 

Using the node numbers in the graph, it's easy to locate the related diagnostics output in 

debug.txt: 

 

   : 

  --> Calling del_3 (4) 

  --> vars: [ A0 = _; A1 = [1, 2, 3]; A2 = _; ] 

Run: (0139)         del_3::: try_me_else del_3_2  % in del_3 

  --> Trying del_3 (5); choice recorded 



57 
 

  --> Choices:  

      * C0: del_3 (5) in E1 

Run: (0140)                  allocate  % in del_3 

  --> Envs (current env: E1): 

        E0: perm_2 (2); back to query 

      * E1: perm_2_2 (3); back to query 

Run: (0141)                  get_variable Y0 A0  % in del_3 

Run: (0142)                  get_variable Y1 A1  % in del_3 

Run: (0143)                  unify_list Y3 Y0 Y2  % in del_3 

Run: (0144)                  unify_variable Y1 Y3  % in del_3 

Run: (0145)                  get_value Y2 A2  % in del_3 

Run: (0146)                  deallocate  % in del_3 

  --> ret: 1, [1, 2, 3],  

      due to (5) 

  --> Envs (current env: E2): 

        E0: perm_2 (2); back to query 

        E1: perm_2_2 (3); back to query 

      * E2: del_3 (5); back to E1 

      --> leaving E2 for E1 

Run: (0147)                  proceed  % in del_3 

  --> Return to perm_2_2 

    : 

 

The del/3 call is followed by the arguments passed to the clause (A0, A1, and A2). The first 

clause of del/3 is tried, becoming node (5), and a choice point is created. The entire choices 

stack is printed, indicating that there's only a single choice point in play at this time.  

When the first clause  of del/3 is executed, the WAM code is printed as numbered "Run" 

lines: the clause begins with an allocate instruction on line 140, and continues until the 

clause returns due to the proceed on line 147.  

When a clause is entered, the current environments list is printed. In this case, it contains 

environments for the perm/2 clauses run in nodes (2) and (3). 

When the deallocate line is reached, any bindings and the final status of the environments 

list are printed. The list now includes an E2 environment representing this del/3 clause. The 

execution then returns to the second clause of perm/2. 

The main drawback of the diagnostics output is its extreme size, but it's possible to use the 

node numbers in the graph to focus on points of interest. For instance, the two green nodes in 

the execution tree which signal where top-level results were first created, are numbered (17) 

and (35). These nodes can be readily located in the diagnostic output to obtain more details. 

Perhaps more useful for debugging, nodes which result in failure are colored red in the 

execution tree, and are also numbered.  

 

 

6. Possible Extensions 



58 
 

BuProlog was developed for use during an "Introduction to Prolog" lab, and also as a source 

of programming projects for a course on compiler design. This section describes some 

extensions to the compiler and virtual machine that could be the basis of project ideas. 

It's sometimes a little irritating that the lexical pattern for an atom only uses upper and 

lowercase letters and digits (i.e. Atom = [a-z]([:letter:]|[:digit:])* ). Most Prologs 

allow at least the use of underscores ('_') and a few other non-letter symbols. Unfortunately, 

adding '_' to the Atom regular expression in Lexer.jflex (see Figure 4) will break some of the 

WAM code generation routines, which use '_' to delimit arity information in the predicate 

names. In addition, GraphViz is quite temperamental about using non-letter symbols in the 

names of its nodes.  

The restriction of numerical data to integers could be relaxed by adding support for floating 

point numbers. This would require changes to the lexical analyzer, but the rest of the 

compiler manipulates its data as strings so would remain mostly unchanged. However, the 

BuWAM would need extra support for treating its data as floats. For example, the numerical 

operations offered by is/2 would need to be extended. 

The need to write numerical tests, such as '<', '==", and so on as functors (i.e. as lt/2 and eq/2) 

is burdensome, and adding grammar rules to support infix versions of these tests would 

undoubtedly be cheerfully greeted. Similarly, it would be pleasing if the expression term in 

is/2 could be written using infix operations such as '+', '-' and so on. Such changes should 

probably be restricted to the parser, which would still convert these elements into their 

current parse tree forms. Also, I'd avoid trying to support operator precedence; brackets for 

grouping operations is a lot easier to implement. 

Another parsing change might be to add support for if-then-else and or, implemented by 

compilation down to existing parse tree structures that employ '!'. 

There's plenty of leeway for adding more built-ins. One approach is to have the BuWAM 

load a standard library of compiled predicates (e.g. the WAM code for append/3, not/1, 

member/2, and so on). Another would be add built-ins in the same way as predicates like is/2.  

Another useful predicate would be getch/1 for reading in a character, although this could be 

supported by adding string manipulation predicates that manipulate the input from readln/1. 

In general, IO should be extended to support streams and/or filenames. 

Other helpful built-ins would be similar to SWI-Prolog's recorded database predicates 

(https://www.swi-prolog.org/pldoc/man?section=recdb) for storing and retrieving terms. This 

capability would allow the Prolog-level implementation of all-solution predicates such as 

findall/3 and bagof/3, which in turn would allow more complex types of search predicates to 

be encoded, such as breadth-first search [3]. Recorded database functionality would be much 

easier to add than support for assert and retract. 

 

  



59 
 

References 

[1]  A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, 1986, Compilers: Principles, 

Techniques, and Tools, Addison-Wesley 

[2]  Hassan Aït-Kaci, 1991, Warren's Abstract Machine: A Tutorial Reconstruction, MIT 

Press. Out of print. Available at https://github.com/a-yiorgos/wambook 

[3]  Ivan Bratko,1986, Prolog Programming for Artificial Intelligence, Addison-Wesley. 

[4]  William Clocksin and Christopher S. Mellish, 1984, Programming in Prolog, 2nd ed. 

Springer-Verlag.   

[5]  Peter Van Roy, 1994, "1983-1993:The Wonder Years of Sequential Prolog 

Implementation", The Journal of Logic Programming, Vol. 19, May, pp. 385–441. 

[6]  Leon Sterling and Ehud Shapiro, 1986, The Art of Prolog, MIT Press.  

[7]  David H. D. Warren, 1983, "An Abstract Prolog Instruction Set", Technical Note 309, 

SRI International, August. 

 

 

 

  



60 
 

Appendix A 

The following table lists all of the example Prolog files included with the system, and a short 

description of each one. 

 

Filename Description 

addrs.pro Home addresses; a small test of terms 

append.pro append/3  

blocks.pro The Blocks World problem 

boxes.pro The boxes problem 

calls.pro Tests of call/1 and univ/3 

colorMap.pro Two versions of map coloring 

crypto.pro Solving cryptoarithmetic puzzles 

cut.pro Tests of cut 

diff.pro Small test of gt/2 and is/2 

errors.pro Predicates with (deliberate) errors. 

family.pro A family database 

flights.pro A flight route planner 

hanoi.pro Towers of Hanoi 

jugs.pro The Water Jugs problem 

lanford.pro The Lanford sequence 

lists.pro Several list predicates: reverse, permutation, 

length, etc. 

math.pro Several math predicates: primes, gcd, lcm, 

ackerman, fibonacci 

maze.pro Find a path through a maze 

mc.pro The missionaries and cannibals problem 

movies.pro A movies database 

nqueens.pro The N queens problem 

parents.pro A parents database; used in an Introduction to 

Prolog lab 

roman.pro Convert years into roman numerals 

solve.pro A simple Prolog meta-interpreter 

sorts.pro Quicksort and insertion sort 

sudoku2.pro A very slow Sudoku solver; illustrates the need 

for constraints. 

tictactoe.pro Tic-Tac-Toe 

zebra.pro The "Finding the zebra" problem. 

Table A. Prolog Examples. 

 



61 
 

 

Appendix B 

The following table lists all of the built-in predicates in BuProlog, along with a list of the 

example files where they are used. 

Built-in Predicate Example File(s) 

writeln/1, write/1 colorMap.pro, cut.pro, mc.pro, roman.pro, 

sudoku2.pro, tictactoe.pro 

atom/1 solve.pro 

integer/1 solve.pro, sudoku2.pro, tictactoe.pro 

var/1, nonvar/1 crypto.pro, sudoku2.pro 

fail calls.pro, math.pro, parents.pro, tictactoe.pro 

is/2: add, sub/minus, mult/mul, 

div, mod 

calls.pro, crypto.pro, diff.pro, errors.pro, 

flights.pro, hanoi.pro, lists.pro, math.pro, 

mc.pro, nqueens.pro, parents.pro, roman.pro, 

solve.pro 

read/1 -- 

readln/1 tictactoe.pro 

Tests: eq/2 (==), neq/2 (!=), crypto.pro, cut.pro, solve.pro 

Tests:  lt/2 (<), le/2 (<=), gt/2 (>), 

ge/2 (>=) 

boxes.pro, calls.pro, cut.pro, family.pro, 

flights.pro, hanoi.pro, math.pro, mc.pro, 

movies.pro, nqueens.pro, parents.pro, 

roman.pro, solve.pro, sorts.pro 

! (cut) calls.pro, crypto.pro, cut.pro, math.pro, 

parents.pro, solve.pro, sudoku2.pro, 

tictactoe.pro 

unify/2 (=) solve.pro, sudoku2.pro, tictactoe.pro, 

zebra.pro 

nunify/2 (\=) maze.pro, mc.pro, parents.pro, solve.pro 

call/1 calls.pro, parents.pro, solve.pro, tictactoe.pro 

univ/3 (=..) calls.pro, solve.pro 

Table B. Example Files using the Built-ins. 

 

 

 


